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Abstract The background for this article is the question of modification of the
geometric configuration of an elastic structure by means of “volume” type actuation.
In this actuation mode stresses are applied to the elastic body by injection/extraction
of a fluid into, or from, a large number of vacuoles in the elastic “matrix” material.
Previous articles by the author, and others, have examined this process and studied
its effectiveness in the context of a “naive” continuous model. The present paper
continues along these lines, exploring “normal boundary component controllability”
criterion for determining achievable configurations for the controlled system in the
two-dimensional case. Connections with conformal mapping lead to affirmative results
for approximate controllability in this sense and Fourier series techniques provide ex-
act controllability results for the case wherein the domain of the uncontrolled system
is a two-dimensional disk.

Keywords Linear elasticity · Control of elastic systems · Volume type control ·
Betti reciprocity principle

AMS-MOS Classifications 74B05 · 74G10 · 74G75 · 93C55

1 Model formulation: control objectives

In static control of elastic systems, as discussed earlier in [5–7] and elsewhere, one is
concerned with the controlled modification of the geometric configuration, i.e., the
“shape,” of an elastic body by means of attached or embedded actuators. These are
idealized as being continuously distributed throughout all or part of the elastic body,
applying a stress distribution determined by externally supplied control signals. In the
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present paper, we consider an isotropic linear elastic solid in two-dimensional space
R2. The undeformed body occupies a region R0 in R2 with smooth boundary B0. We
denote vectors (points) in R2 by capital Latin letters; viz: X; in terms of coordinates,
X = (x, y). The unit exterior (with respect to R0) normal at a point X ∈ B0 will
be denoted by N(X). Deformation of the elastic body is described by means of a
deformation map

X (X) ≡ X + �(X),

where �(X) is the displacement field with components ξ , η. The map X carries the
region R0 into a new region R and is assumed, at the least, to belong to H1 (R0).
Further, X is assumed bijective with positive Jacobian determinant throughout R0.

In the present article we continue to use the “naive,” model developed in the refer-
ences cited above. Some steps toward a more sophisticated theory, obtained through
homogenization studies, have been taken in a later paper [8]. A major strength of the
naive model lies in the fact that it allows most of the standard control and observa-
tion theory to have readily identified counterparts in elastic system control. Its major
shortcoming lies in the fact that, in implementation, the small vacuoles to which the
pressure p(x) is applied would expand or contract and the elastic material between
the vacuoles would undergo local compression or expansion. The naive model ignores
these localized strains and the potential energy thus stored.

Our objective here is to study “volume actuation” of linear elastic systems. This
actuation mode envisions isotropic stresses applied to the elastic body through injec-
tion or extraction of a fluid into or out of, respectively, a large number of small
vacuoles distributed throughout the body, creating thereby a pressure distribution
p(X), X ∈ R0. In the naive model, the Hamiltonian minimized by the displacement
field �(X) with components ξ(x, y), η(x, y) is

1
2

∫ ∫
R0

[
(λ+ ν)

(
∂ξ

∂x
+ ∂η

∂y

)2

+ ν

(
∂ξ

∂x
− ∂η

∂y

)2

+ν
(
∂ξ

∂y
+ ∂η

∂x

)2

− 2p
(
∂ξ

∂x
+ ∂η

∂y

)]
dX, (1.1)

where λ and ν are the Lamé constants [9]. The existence of a unique, modulo uniform
translation and infinitesimal rotation, minimizing �(X) for given p ∈ L2 (R0) is
a consequence of the Lax-Milgram theorem [11] (Chapter III) and the coercivity
implied by Korn’s inequalities [2,10]. The result extends to F ∈ H−1 (R0) and G ∈
H− 1

2 +ε (B0) , ε > 0, using the trace theorem [3]. In the articles cited above, we
have developed the necessary conditions for minimization in terms of a system of
equilibrium partial differential equations and boundary conditions.

We will review several modes of controllability which might plausibly be formulated
in the present context.

• Full domain control: This mode of control seeks to specify the whole mapping
X (X): R0 ↪→R by means of the control p(X). This involves more than the “shape”
of the new geometric configuration R; it also seeks to specify the displacements
in the interior of R0 as well. In most applications this control mode cannot be
realized; we do not pursue it further here.

• Boundary image control: Clearly the controlled geometry of the elastic body
can be specified by giving the boundary B of the image region R and requiring
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X (X) ∈ B, X ∈ B0. The solution of this problem is typically not unique and one
introduces optimality criteria to select the best control/actuator configurations.
This is ordinarily not a linear problem even when posed for a linear elastic system.
It has been studied extensively in [5].

• Normal boundary component control: In this control mode a scalar function
h(X), X ∈ R0, is given in an appropriate space and, with N(X), X ∈ B0,
denoting the unit exterior normal vector, one requires that the controlled dis-
placement �(X) should satisfy N(X)∗�(X) = h(X), X ∈ B0. This has the
advantage that the overall problem remains linear. The disadvantage is that the
relationship between h(X) and the new boundary B (hence the new “shape”) is
typically less than obvious.

In the present article, we study normal boundary component control, via volume
actuation with control pressure p(X), X ∈ R0 ⊂ R2. We begin by studying approxi-
mate controllability in this context, relating it to the familiar Betti Reciprocity Principle
of linear elasticity. Then we study the corresponding exact controllability problem in
the case where R0 is the unit disk, B0 the unit circle, in R2, including resolution of the
relationship between h(X) and the new boundary B when B is close to the unit circle
B0 in a particular sense.

2 Approximate normal boundary component controllability with
volume actuation in R2

In the naive model of volume control with pressure distribution p(X), X ∈ R0 ∈
R2, the Hamiltonian minimized by the displacement field �(X) with components
ξ(x, y), η(x, y) is
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We specify a boundary component control problem by requiring

N(X)∗�(X) = h(x), X ∈ B0, (2.2)

where h(x) is a scalar function in H(1−ε)/2 (B0) ⊂ L2 (B0) for small positive ε. We
will refer to this as the primal (control) problem. The equilibrium displacement �(X)
in the presence of the pressure distribution p(X) satisfies, for an arbitrary δ� =
(δξ , δη) ∈ H1 (R0), the variational equation
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dX = 0. (2.3)

Together with the primal problem we consider a dual (observation) problem for the
related dual system in R0 ⊂ R2 with smooth boundary B0. The latter is a second linear
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elastic system with displacement field 
(X) = (u(X)
v(X)

)
. In the presence of a normally

oriented boundary force g(X) ∈ L2 (B0), the dual Hamiltonian takes the form

L = 1
2
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−
∫
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g(X)N(X)∗
(X)ds, (2.4)

The dual displacement 
 = (u
v

)
minimizing this Hamiltonian with respect to general

displacements in H1 (R0) then satisfies, for an arbitrary δ
 = (δu, δv) ∈ H1 (R0),
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g(X)N(X)∗δ
(X)ds = 0. (2.5)

If in (2.3) we set δξ = u, δη = v, u and v minimizing (2.4), and in (2.5) set
δu = ξ , δv = η, ξ and η minimizing (2.1), and then compare the resulting two
equations, we quickly obtain the version of the Betti Reciprocity Principle applying
to this case:

∫ ∫
R0

p(X)
(
∂u
∂x

+ ∂v
∂y

)
(X)dX =

∫
B0

g(X)N(X)∗�(X)ds. (2.6)

If the normal boundary displacement components N(X)∗�(X) = h(X) achievable
via the primal system via controls p ∈ L2 (R0) are not dense in L2 (B0), then there
will be a function g ∈ L2 (B0) for which the left-hand side of (2.6) is zero for all

p ∈ L2 (R0). But this clearly implies ∇∗
(X) ≡
(
∂u
∂y + ∂v

∂x

)
(X) ≡ 0, X ∈ R0. Thus

we have the

Control/observation duality result: The primal control system fails to have the prop-
erty of approximate normal boundary component controllability in L2 (B0) if and only
if the dual observation system fails to be observable (detectable) in the sense that there is
an input g ∈ L2 (B0) for which the “observation” divergence ∇∗
(X) ≡ 0, X ∈ R0.

3 Approximate normal boundary component controllability
for a general region ⊂ R2

Our objective in this section is to prove the following theorem.

Theorem 3.1 Let R0 be a simply connected domain in R2 with smooth boundary B0

and unit exterior normal N(X) = (n1(x,y)
n2(x,y)

)
, X ∈ B0. Then the primal system has the

property of approximate normal boundary component controllability.

Proof We will give a proof by contradiction. Let us suppose there is a function

g(X) ∈ L2 (B0) such that ∇∗
 ≡
(
∂u
∂x + ∂v

∂y

)
(X) ≡ 0 in R0. Then, redefining g/ν as

g again, (2.5) must take the form
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It is well known (cf. e.g. [11]) that the minimizer of (2.4) must, in fact, lie in H2(R0)

with first order partial derivatives having H(1−ε)/2 traces on B0, ε > 0. Thus we can
see, using the divergence theorem, that (3.1) reduces to
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Setting the coefficients of δu and δv equal to zero separately on R0 and B0 we obtain
the system of partial differential equations

∂
∂x

(
∂u
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)
+ ∂
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X ∈ R0 (3.2)

and the boundary conditions(
∂u
∂x − ∂v

∂y

)
n1 +

(
∂u
∂y + ∂v

∂x

)
n2 = g n1,(

∂u
∂y + ∂v

∂x

)
n1 −

(
∂u
∂x − ∂v

∂y

)
n2 = g n2,

X ∈ B0. (3.3)

Now, in fact, Eq. (3.2) reduce to �u = 0, �v = 0, where � is the Laplacian. So u
and v are harmonic in R0. On the other hand, denoting the exterior normal derivative
on B0 by ∂

∂N and the tangential derivative in the mathematically positive direction on
(the curve) B0 by ∂

∂T , (3.3) gives

∂u
∂N − ∂v

∂T = g n1,
∂u
∂T + ∂v

∂N = g n2,
X ∈ B0. (3.4)

The lemma to follow shows that if (3.4) is satisfied with u and v harmonic in R0, then
g = 0 in L2 (B0). The proof of the theorem then follows from the control/observation
duality result set forth previously.

Lemma 3.1 Let u(x, y), v(x, y) be harmonic functions in the simply connected domain
H2(Ro)with smooth boundary B0. Suppose there is a real valued function g(x, y) (min-
imally) in L2(B0) such that (3.4) is satisfied on B0. Then g = 0 in L2(B0) and the
complex function u(x, y)+ i v(x, y) is holomorphic in R0.

Proof It is readily verified that, with z = x + i y, we may represent u(x, y) + i v(x, y)
in the form,

u(x, y) + i v(x, y) = φ(z) + ψ(z),
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where φ(z) and ψ(z) are holomorphic in R0 and the conjugate domain R0, respec-
tively. Writing

φ(z) = φ1(x, y) + iφ2(x, y), z ∈ R0, ψ(z) = ψ1(x, y) + iψ2(x, y), z ∈ R0

then for z = x + i y ∈ R0 we have, using the Cauchy-Riemann equations,

ψ ′(z) = ∂ψ1

∂x
(x, −y) + i

∂ψ2

∂x
(x, −y) = ∂ψ1

∂x
(x, −y) − i

∂ψ1

∂y
(x, −y).

Elementary computations show, for z = x + i y ∈ R, that
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)
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)
.

Thus, for z = (x, y) ∈ B, application of (3.4) yields
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)
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(
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2

(
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(
∂u
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+ ∂v
∂N

)
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(
∂u
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∂T
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= 1
2

(
n2

1 g − n2
2 g

)
+ i

2

(
2 n1n2 g

) = 1
2

(
n1 + i n2

)2 g. (3.5)

Now let z = χ(ζ ) map the unit disk |ζ | ≤ 1 onto R0 ∪ B0. Since B0 is smooth
the mapping is continuously differentiable and conformal on the closed domain [1,4].
Then the function

f (z) ≡ χ ′(ζ )ζ = χ ′ (χ−1(z)
)
χ−1(z)

is analytic in R0 and continuous onR0∪B0. Since ζ = eiω, considered as a two-dimen-
sional vector, is the unit exterior normal to the unit disk at the point ζ , conformality
shows that χ ′(ζ )ζ , considered as a vector, must be a positive multiple of the unit
exterior normal to R0 at z = χ(ζ ). That is, for some positive q = q(z),

f (z) ≡ q(z) (n1(z) + i n2(z)) , z ∈ B0 ⇒ f (z)2

= q(z)2 (n1(z) + i n2(z))2 , z ∈ B0.

Then, from (3.5),

ψ ′(z) = g(z)
q(z)2

f (z)2 ⇒ ψ ′(z)f (z) 2 = g(z)
q(z)2

|f (z)|4 , z ∈ B0.

Conjugating, the function

h(z) = (ψ ′(z))f (z)2

is analytic in R0, continuous on R0 ∪ B0 and real valued on B0, which implies h(z) is
a constant. Since f (χ(0)) = 0, we must have

h(z) ≡ 0, z ∈ R0 ∪ B0 ⇒ g(z) ≡ 0, z ∈ B0.

Since f (z) �= 0 on B0, we conclude ψ ′(z) ≡ 0, z ∈ B0. Then ψ(z) ≡ c, c constant, in
R0 ∪ B0 and u(x, y) + i v(x, y) ≡ φ(z) + i c is holomorphic in R0 ∪ B0. The proof is
complete.
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Remark To show that the smoothness assumption on B0 is necessary we consider
the case where R0 is a rectangle and u(x, y) ≡ x, v(x, y) ≡ −y. Here the obvi-
ous counterparts of Theorem 3.1 and Lemma 3.1 fail because, as follows from the
Schwarz-Christoffel formula, χ ′(ζ ) ≡ χ ′ (χ−1(z)

)
assumes arbitrarily large values as

z approaches any one of the corners of the rectangle. Then h(z) behaves similarly
and the maximum principle cannot be applied to show that Im((h(z))) vanishes in R0,
upon which the proof of h(z) constant depends.

Expanding further upon the point just made, we can identify a large number,
indeed, infinitely many, domainsR0 with piecewise smooth boundariesB0 for which the
counterpart of Lemma 3.1 does not obtain and, consequently, one does not have
approximate normal boundary component controllability with volume actuation as in
Theorem 3.1. Let U(x, y)+ i V(x, y) be an analytic function in a domain D̂ ∈ R2 and,

in the conjugate domain D = D̂ define

u(x, y) = U(x, −y), v(x, y) = V(x, −y).

Clearly u(x, y), v(x, y) are harmonic in D and, from the Cauchy-Riemann equations
satisfied by U(x, y), V(x, y) in D̂, for (x, y) ∈ D, we have
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= ∂
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(3.6)
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∂u
∂y
(x, y).

(3.7)

As a consequence of (3.6), (3.7), Eq. 3.3 becomes (for convenience redefining g as 2 g)
( ∂u
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∂u
∂y − ∂u

∂x

)(
n1

n2

)
= g

(
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)
, X ∈ B. (3.8)

Equation 3.8 has the form of an eigenvalue-eigenvector problem for the matrix
appearing on the left. Computing

det
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∂x − g ∂u

∂y
∂u
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)
= g2 −
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∂u
∂x

2
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2
)
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the eigenvalues are

g+ =
√
∂u
∂x

2
+ ∂u
∂y

2
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√
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∂x

2
+ ∂u
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2
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The corresponding (orthogonal, since the matrix in (3.8) is symmetric) eigenvectors

N+ =
(

n1,+
n2,+

)
, N− =

(
n1,−
n2,−

)

must consequently be orthogonal to the first row of the matrix in (3.9) with g replaced
by g±, respectively, and hence to the vectors

T+ =
( ∂u
∂x − g+

∂u
∂y

)
=

( ∂u
∂x −

√
∂u
∂x

2 + ∂u
∂y

2

∂u
∂y

)
,

T− =
( ∂u
∂x − g−

∂u
∂y

)
=

( ∂u
∂x +

√
∂u
∂x

2 + ∂u
∂y

2

∂u
∂y

)
.

We may define a system of mutually orthogonal curves in D consisting of solutions of

the two-dimensional
(

X = (x
y

))
systems

C+ :
dX+

dt
= T+(X+), C− :

dX−
dt

= T−(X−).

Any number of regions R0 may now be constructed by taking the boundary B0 to
consist of alternating arcs taken from C+, C−, selected so that B0 forms one or more
closed curves in D. With the proper sign, ±N+, ±N− on arcs in C+, C−, respectively,
will be exterior normal vectors to R0 along those arcs, for which the equations (3.8),
and hence (3.3), are satisfied for the respective values of g± as shown in (3.10).

In Fig. 1 below two regions R0 are shown, corresponding to U(x, y) + i V(x, y) =
(x + i y)2, U(x, y) + i V(x, y) = (x + i y)3. Both curve systems C+, C−, are shown in
the case at the left; only one at the right.

Fig. 1 Example regions for which Lemma 3.1 is not valid
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4 Target region specification via normal boundary displacement component for the
unit disk in R2

For volume control with a pressure distribution p(X), X ∈ R0, the relevant Ham-
iltonian minimized by the displacement field �(X) with components ξ(x, y), η(x, y)
is

1
2

∫ ∫
R0

[
(λ+ ν)

(
∂ξ

∂x
+ ∂η

∂y

)2

+ ν

(
∂ξ

∂x
− ∂η

∂y
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+ν
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+ ∂η
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)2
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+ ∂η

∂y

)]
dX. (4.1)

We specify a boundary component control problem by requiring

N(X)∗�(X) = h(x), X ∈ B0, (4.2)

where h(x) is a scalar function, at least of class C1 on B0. Minor modifications to theo-
rems given in [5] show that, assuming (4.2) can be realized, the control p(X), X ∈ R0
of least norm in L2(R0) realizing this objective takes the form p(X) = div U(X) for
some solution U(X) of the dual problem with g(X) as described earlier and, as such,
p(X) is harmonic inR0. A further theorem in [5] then shows that the resulting displace-
ment �(X) is such that the corresponding complex valued function ξ(x, y) + i η(x, y)
is analytic, and thus a conformal map. Application of the Cauchy-Riemann equations
to ξ(x, y), η(x, y) then shows that the controlled displacement in fact must minimize
a reduced Hamiltonian

1
2

∫ ∫
R0

[
(λ+ ν)

(
∂ξ

∂x
+ ∂η

∂y

)2

− 2p
(
∂ξ

∂x
+ ∂η

∂y

)]
dX. (4.3)

Restricting attention to the case where the domain R0 is the unit disk in R2 and chang-
ing to polar coordinates with polar displacement coordinates σ and µ, we obtain the
reduced Hamiltonian in polar form

1
2

∫ 2π

0

∫ 1

0

[
(λ+ν)

(
∂σ

∂r
+ σ

r
+ 1

r
∂µ

∂θ

)2

− 2p
(
∂σ

∂r
+ σ

r
+ 1

r
∂µ

∂θ

)]
r dr dθ . (4.4)

The corresponding variational equation is then
∫ 2π

0

∫ 1

0

[
(λ+ ν)

(
∂σ

∂r
+ σ

r
+ 1

r
∂µ

∂θ

) (
r
∂δσ

∂r
+ δσ + ∂δµ

∂θ

)

− p
(

r
∂δσ

∂r
+ δσ + ∂δµ

∂θ

)]
dr dθ = 0. (4.5)

Integrating by parts and setting the coefficients of δσ and δµ in the resulting equations
equal to zero we arrive at the partial differential equations

(λ+ ν)
∂

∂r

(
∂σ

∂r
+ σ

r
+ 1

r
∂µ

∂θ

)
− ∂p
∂r

= 0,

(λ+ ν)
∂

∂θ

(
∂σ

∂r
+ σ

r
+ 1

r
∂µ

∂θ

)
− ∂p
∂θ

= 0, (4.6)
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which together imply, for some constant c, that

(λ+ ν)

(
∂σ

∂r
+ σ

r
+ 1

r
∂µ

∂θ

)
− p = c (4.7)

in R0. We also have, from the integration by parts in the r direction, the boundary
condition [

(λ+ ν)

(
∂σ

∂r
+ σ

r
+ 1

r
∂µ

∂θ

)
− p

] ∣∣∣∣
r = 1

= 0, (4.8)

which implies c = 0 in (4.7).
In polar coordinates the Cauchy-Riemann equations take the form

∂σ

∂r
= σ

r
+ 1

r
∂µ

∂θ
,

∂µ

∂r
= µ

r
− 1

r
∂σ

∂θ
. (4.9)

Substituting the first equation of (4.9) into (4.7) with c = 0 we obtain

∂σ

∂r
= p

2(λ+ ν)
, (4.10)

which determines σ in R0 once σ has been given on the boundary B0. Assuming
σ = 0 at the origin, the normal displacement component on the boundary is given by

σ(1, θ) = 1
2(λ+ ν)

∫ 1

0
p(r, θ)dr.

If we assume it is the modified regionR, with boundaryB, which is of direct interest,
our problem becomes that of specifying σ(1, θ) such that the solution of this boundary
component control problem yields a deformation X (X) = X + �(X) mapping R0
to R. In general this problem appears to be very difficult but we can obtain some
results for R0 the unit disk presently under discussion. Given σ(1, θ), we assume it is
achieved with the unique volume control p(r, θ) of least norm in L2 (R0); then p(r, θ)
is harmonic in that region. We expand the boundary values p(1, θ) in Fourier series to
obtain

p(1, θ) =
∞∑

k=−∞
pk eikθ .

Then, as is well known, we have

p(r, θ) =
∞∑

k=−∞
pk r|k| eikθ (4.11)

in the whole disk. Assuming

σ(1, θ) =
∞∑

k=−∞
σk eikθ ,

we then have, for k = 0, 1, 2, . . . ,

σk = pk

2(λ+ ν)

∫ 1

0
r|k| dr = pk

2(λ+ ν)(|k| + 1)
⇒ pk = 2(λ+ν) (|k|+1) σk. (4.12)
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From (4.12) we see that we can obtain p(1, θ) ∈ Hm(B0) if σ(1, θ) ∈ Hm+1([0, 2π])
for any nonnegative m. Then from the second of Eq. (4.9), we have (µ(θ) = µ(1, θ))

µ′(θ) = p(1, θ)
2(λ+ ν)

− σ(1, θ). (4.13)

We can obtain σ(r, θ) from (4.10) as

σ(r, θ) = 1
2(λ+ ν)

∫ r

0
p(ρ, θ)dρ =

∞∑
k=−∞

pk r|k|+1

2(λ+ ν)(|k| + 1)
eikθ . (4.14)

Substitution of (4.10) into the first Eq. (4.9) followed by use of (4.11) and (4.14) gives
a periodic function µ(θ) ≡ µ(1, θ) ∈ Hm+1([0, 2π ]):

µ(r, θ) =
∑
|k|>0

pk r|k|+1

2(λ+ ν)(|k| + 1)
i
k

eikθ −
∑
|k|>0

pk r|k| i
k

eikθ . (4.15)

If we then substitute the formula for pk in terms of σk appearing in (4.14) we obtain

µ(r, θ) =
∑
|k|>0

2(λ+ ν) (|k| + 1)− 1
ik

σk eikθ . (4.16)

Taking r = 1 we conclude that the map from σ(1, θ) to µ(1, θ) is a bounded map from
Hm([0, 2π]) to itself for m ≥ 1.

Let us suppose the target boundary B is described by an equation

r = 1 + ρ(θ), 0 ≤ θ ≤ 2π , (4.17)

where ρ(θ) is of class C2 with ρ(0) = ρ(2π), ρ′(0) = ρ′(2π). Then for each θ0 the
points

r = 0; r = 1 + σ(1, θ0), θ = θ0;

r = 1 + ρ(θ0 + µ(1, θ0)), θ = θ0 + µ(1, θ0)

must form a right triangle because the point r = 1+ρ(θ0 +µ(1, θ0)), θ = θ0 +µ(1, θ0)

must lie on the line passing through r = 1 + σ(1, θ0), θ = θ0 and orthogonal to the
line joining the origin to this latter point. Thus

1 + σ(1, θ0)

1 + ρ(θ0 + µ(1, θ0))
= cos(µ(1, θ0)).

Replacing θ0 by the generic θ , we obtain the equation

σ(1, θ) = cos(µ(1, θ))
(
1 + ρ(θ + µ(1, θ))

) − 1. (4.18)

Of course it is clear that if we start with ρ(θ), the normal displacement component
σ(1, θ) and the tangential displacement component µ(1, θ) will not be known at the
outset. The problem is to determine those functions in such a way that the solution of
the normal boundary component problem with specified σ(1, θ) will achieve the new
boundary given by r = ρ(θ).

Theorem 4.1 Let R0 be the unit disk in R2 and let R ⊂ R2 be a region whose boundary,
B, is described by Eq. (4.17) with ρ(θ) as indicated there. Let

a = max[0,2π))
|ρ(θ)| , b = max[0,2π))

∣∣ρ′(θ)
∣∣ , d = max[0,2π))

∣∣ρ′′(θ)
∣∣ . (4.19)
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Then, if a, b, and d are sufficiently small positive numbers, there is a unique function
σ(θ) ∈ H1 ([0, 2π)) such that the unique solution of the normal boundary component
control problem with objective σ(1, θ) = σ(θ), corresponding to a volume control
p(r, θ) of least norm in L2 ([0, 2π)), achieves a deformation X (X) = X + �(X) map-
ping R0 onto R, equivalently mapping B0, the unit circle in R2, onto B, the boundary
of R, described by ρ(θ).

Proof Let �a be the metric space consisting of functions σ(θ) ∈ H1 ([0, 2π)) such
that

max[0,2π)
|σ(θ)| ≤ 2 a,

∥∥σ ′∥∥
L2([0,2π)) ≤ c,

where c > 0 is yet to be determined. The metric is that consistent with the norm,
equivalent to the standard norm in H1([0, 2π)),

‖σ‖� = max[0,2π)
|σ(θ)| + ∥∥σ ′∥∥

L2([0,2π)) . (4.20)

Given σ(θ) ∈ �, we define µ(θ) by the formula (4.16) with r = 1:

µ(θ) =
∑
|k|>0

2(λ+ ν) (|k| + 1)− 1
ik

σk eikθ . (4.21)

Then µ(θ) lies in H1([0, 2π)) and we have∥∥µ′∥∥
L2([0,2π)) ≤ 4(λ+ ν)

∥∥σ ′∥∥
L2([0,2π)) ≤ 4(λ+ ν)c,

|µ(θ)| ≤ 4(λ+ ν)
√

2π
∥∥σ ′∥∥

L2([0,2π)) ≤ 4(λ+ ν)
√

2πc. (4.22)

Then we define σ̃ (θ) using (4.18), i.e.,

σ̃ (θ) = cos(µ(θ)) ρ(θ + µ(θ)) − (
1 − cos(µ(θ))

)
. (4.23)

Differentiating, we have

σ̃ ′(θ) = cos(µ(θ))ρ′(θ + µ(θ))(1 + µ′(θ))
− sin(µ(θ))µ′(θ)

(
1 + ρ(θ + µ(θ))

)
. (4.24)

Now we want to estimate σ̃ . Using (4.24) and (4.22) we have
∥∥σ ′∥∥

L2([0,2π)) ≤ b
(√

2π + ∥∥µ′∥∥
L2([0,2π))

)
+ (1 + a)s

∥∥µ′∥∥
L2([0,2π))

≤ b
(√

2π + 4(λ+ ν)c
)

+ 4s(1 + a)(λ+ ν)c, (4.25)

where s = max[0,2π) |sin(µ(θ))|. We assume c > 0 chosen small enough so that, using
the second estimate in (4.22), we have 4s(1 + a)(λ+ ν) ≤ 1

2 . Next we take b > 0 so

that b
(√

2π + 4(λ+ ν)
)

≤ 1
2 . Then (4.25) gives

∥∥∥σ̃ ′∥∥∥
L2([0,2π))

≤ c.

Using (4.18) we have

|σ̃ (θ)| ≤ a + |µ(θ)|2
2

≤ a + 32c2(λ+ ν)2π

2
(4.26)
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and, further restricting c as necessary, we have

|σ̃ (θ)| ≤ 2a, θ ∈ [0, 2π). (4.27)

Referring to (4.20), (4.26), and (4.27) together imply, for σ ∈ �, that σ̃ ∈ � as well.
Next we examine the contraction property. Since σ̃ , from (4.23), depends only on

ρ and µ, it is enough to compute

∂σ̃

∂µ
(µ(θ)) = − sin(µ(θ))ρ(θ + µ(θ)) + cos(µ(θ))ρ′(θ + µ(θ))− sin(µ(θ))

so that, with the definitions and restrictions above
∣∣∣∣∂σ̃∂µ (µ(θ))

∣∣∣∣ ≤ s(a + 1) + b.

In (4.24) σ ′ depends on both µ and µ′ so we compute

∂σ̃ ′

∂µ
(µ(θ),µ′(θ)) = − sin(µ(θ))ρ′(θ + µ(θ))(1 + µ′(θ))

+ cos(µ(θ))ρ′′(θ + µ(θ))(1 + µ′(θ))
− cos(µ(θ))µ′(θ)(1 + ρ(θ + µ(θ)))

− sin(µ(θ))µ′(θ)ρ′(θ + µ(θ))

from which, with d as in (4.19), we have the estimate (all norms in L2([0, 2π) unless
indicated otherwise)

∥∥∥∥∂σ̃
′

∂µ
(µ(θ),µ′(θ))

∥∥∥∥ ≤ (sb + d)
(√

2π + ∥∥µ′∥∥)

+ (1 + a)
∥∥µ′∥∥ + sb

∥∥µ′∥∥ . (4.28)

Further, we have

∂σ̃ ′

∂µ′ (µ(θ),µ
′(θ)) = cos(µ(θ))ρ′(θ + µ(θ)) − sin(µ(θ))(1 + ρ(θ + µ(θ)),

leading to the estimate
∥∥∥∥∂σ̃

′

∂µ′ (µ(θ),µ
′(θ))

∥∥∥∥ ≤ b + s(1 + a), (4.29)

wherein the norm on the left is the norm of
(
∂σ̃ ′

/
∂µ′

)
(µ(θ),µ′(θ)) as a bounded

linear operator on L2([0, 2π)).
By restricting the size of d, and further restricting a, b, c, and s as necessary, the

right-hand sides of the estimates (4.28) and (4.29) can be made as small as desired.
Since we have seen in (4.22) that the operator carrying σ(θ), σ ′(θ) to µ(θ), µ′(θ)
is bounded relative to the norm (4.20), with our restrictions the operator carrying
σ(θ), σ ′(θ) is a contraction and the proof is complete.
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